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ABSTRACT 

 Observing the uncertainty property of matchup 

scores, in this paper, we present a new predictive model 

(V2.0) of coupling matrix completion process with a 

perturbation strategy to generate the winning probabilities 

for March Madness matches. We first perform the 

perturbation process to estimate the possible fluctuations 

in the outcome of regular season matches, where a set of 

perturbed score matrices is generated by taking into 

account the standard deviation of historical performance 

of each team. Then, matrix completion is carried out on 

each perturbed score matrix to estimate the potential 

spread in the outcome of a tournament game. Finally, the 

winning probability for each possible tournament game is 

evaluated based on the number of wins and losses in the 

completed matrices. We analyze the parameters, which 

are encountered in the perturbation process and matrix 

completion based on historical records of game scores, 

and identify appropriate values of these parameters to 

improve the prediction accuracy. The effectiveness of our 

predictive model is demonstrated in the Kaggle’s March 

Machine Learning Mania competition 2016. 
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Completion, Perturbed Score Matrices, Winning 
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1. INTRODUCTION  

 Each March, the National Collegiate Athletic 

Association (NCAA) conducts a popular college sporting 

event known as March Madness, a single-elimination 

tournament to select the national championship from 68 

college basketball seeded teams [1]. One of the best parts 

of March Madness tournament is not only watching the 

great competitions, but also following the excitement of 

participating in a bracket challenge to predict the outcome 

of the tournament games. In 2016, tens of millions of 

bracket predictions have been created and submitted to 

bracket challenge contests organized by the companies 

and associations, for instances, NCAA [2], Kaggle [3], 

ESPN [4], Yahoo [5], and NBC [6]. 

 The March Madness event has attracted the attention 

of researchers to apply data science to predict the winners. 

The early work by Colley [7] and Massey [8] predicted 

the match outcomes by solving systems of linear 

equations. Since then, there have been many 

developments in the field. For example, Smith and 

Schwertman [9] used a linear regression model and 

identified the nearly linear relationship between the 

tournament seeds and the game results. Ruiz and Perez-

Cruz [10] adapted a classical soccer forecasting model to 

produce predictions for basketball games. Lopez and 

Matthews [11] designed a logistic regression model using 

team-based possession metrics, whose bracket won the 

Kaggle competition 2014. Gupta [12] developed a dual-

proportion probability model with a team rating system to 

produce the bracket predictions. In comparison to existing 

models, we created a predictive model based on matrix 

completion approach to forecast the winning probabilities 

[13], which allowed us to successfully predict 49 out of 

63 tournament games in March Madness 2015.  

 Even though our previous matrix-completion-based 

model worked well in March Madness prediction, a 

challenge we faced is how to overcome probability 

assignment issues that arose because of the uncertainty 

property of matchup scores. It is well known that the final 

scores played by the same two teams may vary 

significantly if the match were performed again, due to a 

fluctuation in the relative strength of the teams. 

Sometimes an upset happens [14], where a lower-seeded 

team beats a higher-seeded team. Therefore, a winning 

probability based on a range of the potential outcomes of 

a game would be able to yield more accurate prediction 

results, compared to a single instance of predicted scores. 

 In this paper, we present a new predictive model 

(V2.0) that combines matrix completion and a 

perturbation process to generate the winning probabilities 

of March Madness matches. First of all, we construct a set 

of perturbed score matrices to account for the possible 

fluctuations in the outcome of regular season matches. 

Then, we apply matrix completion to each perturbed score 

matrix to estimate the range of the potential outcomes of a 

tournament game. As a result, the predicted winning 

probability of each possible tournament game is 

calculated from the corresponding entries in the 

completed matrices. 

 The rest of the paper is organized as follows. Section 

2 describes the proposed predictive model. The results are 



shown in section 3. Finally, Section 4 concludes the 

paper. 

 

2. METHODS 

 The predictive model V2.0 incorporates three 

primary components: (1) perturbation process, which 

generates a set of perturbed score matrices. (2) matrix 

completion, which completes the perturbed score 

matrices. (3) probability adjustment, where the predicted 

winning probabilities are derived from the completed 

score matrices.  
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Figure 1.  Procedure of the predictive model V2.0 

  

 Figure 1 presents the procedure of the proposed 

predictive model V2.0. Compared to our last year’s 

predictive model (V1.0) [13], the model V2.0 relies only 

on the score information of regular season matches to 

predict the winning probabilities, instead of considering 

relevant game details, such as assists, turnovers, and 

teams’ rank. Moreover, the perturbation process is 

introduced to estimate the possible fluctuations on 

matchup scores. The perturbation process can improve the 

prediction accuracy on the potential upsets in tournament, 

which will be demonstrated in Section 3.  

 We participated in the bracket challenge contest “the 

March Machine Learning Mania 2016”, which is hosted 

by Kaggle.com. Each participant group can submit at 

most two bracket predictions containing the winning 

probabilities of every possible matchup in the tournament. 

The Log Loss function below is employed to evaluate 

each submission, 

𝐿𝑜𝑔𝑙𝑜𝑠𝑠 = −
1

𝑛
∑(𝑦𝑖 log(𝑝𝑖) + (1 − 𝑦𝑖) log(1 − 𝑝𝑖))

𝑛

𝑖=1

 

where 𝑛  is the number of games, 𝑝
𝑖

 is the winning 

probability of  team 1 to win over team 2, and 𝑦
𝑖
 equals 1 

if team 1 wins over team 2 and 0 otherwise. The bracket 

prediction with a smaller value of 𝐿𝑜𝑔𝐿𝑜𝑠𝑠  achieves 

better prediction accuracy.  

 

2.1 Perturbation Process 
 We formulate score records from regular season 2016 

into matrix format, where 364 teams are placed in rows 

and columns and each nonzero entry stores a matchup 

score. Figure 2 shows the colormap of the score matrix 

2016. It can be seen that the score matrix is an incomplete 

matrix, where most of the entries are unknown.   

 
Figure 2.  The Colormap of the score matrix 2016 

  

 In basketball games, it is common that teams 

experience random fluctuations in their performance. 

Therefore, there exists such a bounded range of scores on 

every entry in the score matrix, and any value in the range 

is likely to happen in real competitions. To this end, we 

generate a set of independently perturbed score matrices 

to sample and estimate the possible fluctuations in the 

outcome of regular season matches. 

 Let 𝑀 denote the incomplete score matrix and Ω be a 

set of the indices of the matchup scores from the regular 

season. Each perturbed score matrix as a sample is created 

by adding a Gaussian random perturbation to each 

nonzero score entry in the score matrix, such that  

𝑀𝑖𝑗 = 𝑀𝑖𝑗 + 𝑡𝑖  for (𝑖, 𝑗) ∈  Ω 

where 𝑡𝑖 is a random variable for team 𝑖 which follows the 

normal distribution 𝑁(0, (𝑠𝜎𝑖)
2).  
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Figure 3.  The average Logloss of the predictions for 

years 2012-2015 

 The standard derivation 𝑠𝜎𝑖 is specified as a multiple 

of the standard derivation 𝜎𝑖 of the game scores of team 𝑖 
played in the past. The scalar 𝑠  is a positive number 

which is tuned to obtain a smallest average Logloss value 

of predictions. Our analysis found that 𝑠 = 1.0 and 𝑠 =
1.5  obtain the smallest Logloss values on historical 

records for 2012 to 2015, as shown in Figure 3.  

 

2.2 Matrix Completion 

 Matrix completion is the process of recovering the 

unknown entries of an incomplete matrix based on a small 

set of observed samples [15, 16, 17]. In our model, we 

apply the Singular Value Thresholding (SVT) algorithm 

[18], one of the popular matrix completion approaches, to 

complete each perturbed score matrix. In theory, the SVT 

algorithm seeks a low-rank matrix 𝑋 that minimizes the 

following Lagrange dual function,   

𝜏‖𝑋‖∗ +
1

2
‖𝒫𝛺(𝑋) − 𝒫𝛺(𝑀 )‖𝐹

2  

where 𝒫𝛺  is the projection operation and 𝜏  is a 

Lagrange  multiplier trading off between the nuclear and 

Frobenius norm. 

 
Figure 4.  The prediction error for years 2012-2015 

  

 In general, parameter 𝜏 is specified to be a factor of 

√𝑚𝑛, such that 𝜏 = 𝜔√𝑚𝑛 , where  𝑚  and 𝑛  denote the 

dimension of the incomplete matrix and 𝜔 is a positive 

number. In order to figure out a satisfactory 𝜔 value, we 

use MSE (mean squared error) to measure the prediction 

error between the predicted scores from the completed 

matrices and the actual tournament scores from 2012-

2015. Since the MSE for each year may differ 

significantly, to determine the optimal 𝜔  we chose the 

value that performs the best over all years. This was 

calculated by: 

𝜔∗ = arg min
600≤𝜔≤2000

( ∑ (𝑒𝑦𝜔 − min
600≤𝑡≤2000

{ 𝑒𝑦𝑡} )

2015

𝑦=2012

) 

where y is the tournament year and 𝑒𝑦𝜔 is the MSE value 

for a completed matrix in a given year at a 𝜔 between 600 

and 2000. Figure 4 shows prediction errors on the 

tournament games 2012-2015 at different 𝜔. As a result, 

𝜔∗ =  1250  becomes an obvious choice for our model 

which achieves the smallest prediction error.  

 

2.3 Probability Adjustments  

 By counting the number of wins by the teams from a 

set of completed matrices, in the model V2.0, we use the 

following equation to generate a winning probability 

𝑝
𝑡𝑒𝑎𝑚1,𝑡𝑒𝑎𝑚2

 of a game that team 1 beats team 2,  

𝑝
𝑡𝑒𝑎𝑚1,𝑡𝑒𝑎𝑚2

=
𝑛𝑤𝑖𝑛𝑠𝑡𝑒𝑎𝑚1

𝑛𝑤𝑖𝑛𝑠𝑡𝑒𝑎𝑚1 + 𝑛𝑤𝑖𝑛𝑠𝑡𝑒𝑎𝑚2

 

where 𝑛𝑤𝑖𝑛𝑠𝑡𝑒𝑎𝑚1 and 𝑛𝑤𝑖𝑛𝑠𝑡𝑒𝑎𝑚2  denote the number 

of wins by team 1 and team 2, respectively. 
Additionally, based on the tournament statistics [1] that 

no team with seed 16 has ever won a team with seed 1, we 

apply the following rule 

𝑝
𝑖

= {
1 𝑖𝑓  𝑆𝑒𝑒𝑑𝑡𝑒𝑎𝑚1 = 1   𝑎𝑛𝑑    𝑆𝑒𝑒𝑑𝑡𝑒𝑎𝑚2 = 16 

0 𝑖𝑓  𝑆𝑒𝑒𝑑𝑡𝑒𝑎𝑚1 = 16   𝑎𝑛𝑑    𝑆𝑒𝑒𝑑𝑡𝑒𝑎𝑚2 = 1
 

to lower the 𝐿𝑜𝑔𝐿𝑜𝑠𝑠 value of our predictive model.  

 

3. RESULTS   

 By generating and completing 1000 perturbed scores 

matrices, our predictive model V2.0 generates the 

winning percentages for 2278 potential tournament games 

in 2016. For simplicity, the resulting two brackets with 

𝑠 = 1.0 and 𝑠 = 1.5 are shown in Appendix, respectively.  

 Figure 5 presents the actual result of the March 

Madness 2016 [19], where the games we predicted 

correctly are highlighted in red color and the ones we lost 

in green and blue colors. One can find that our predictive 

model V2.0 is able to predict accurately the win/lose 

outcome of 47 out of 63 tournament games. More 

importantly, based on the perturbation process, we 

successfully predicted 11 out of 20 upset games (55%), 

which outperforms our last year’s result that only 4/12 

upsets (33%) were forecasted [13]. However, the final 

𝐿𝑜𝑔𝐿𝑜𝑠𝑠 score of our prediction (0.598446) is slightly 

greater than that of last year by 0.068899. This is due to 

the fact that more severe upsets occurred this year, which 
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heavily penalize our prediction. As shown in green color 

in Figure 5, for example, No.1, No. 2, No. 3, and No. 4 

seed teams unfortunately lost their tournament games, 

which largely increase our 𝐿𝑜𝑔𝐿𝑜𝑠𝑠 score by 0.0807.  

 

4. CONCLUSION 

 The predictive model V2.0 for March Madness 2016 

is presented. To take into account the uncertainties of 

matchup scores by the teams, the perturbation process and 

matrix completion on score matrices are carried out to 

estimate the potential spread in the outcome of a 

tournament game. The predicted winning probabilities are 

then evaluated from the corresponding entries in the 

completed perturbed score matrices.  

 The predictive model proposed in this paper takes 

into account only score records. To gain further 

improvement in the prediction accuracy, our future work 

will focus on building a comprehensive predictive model 

involving relevant game details, such as assists, turnovers, 

and teams’ rank. 
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APPENDIX 

 (1) The first bracket 

 

(2) The second bracket 

 

 

 

 

 


