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ABSTRACT

Observing the uncertainty property of matchup
scores, in this paper, we present a new predictive model
(V2.0) of coupling matrix completion process with a
perturbation strategy to generate the winning probabilities
for March Madness matches. We first perform the
perturbation process to estimate the possible fluctuations
in the outcome of regular season matches, where a set of
perturbed score matrices is generated by taking into
account the standard deviation of historical performance
of each team. Then, matrix completion is carried out on
each perturbed score matrix to estimate the potential
spread in the outcome of a tournament game. Finally, the
winning probability for each possible tournament game is
evaluated based on the number of wins and losses in the
completed matrices. We analyze the parameters, which
are encountered in the perturbation process and matrix
completion based on historical records of game scores,
and identify appropriate values of these parameters to
improve the prediction accuracy. The effectiveness of our
predictive model is demonstrated in the Kaggle’s March
Machine Learning Mania competition 2016.

Keywords: March Madness Prediction, Matrix
Completion, Perturbed Score Matrices, Winning
Probabilities, March Machine Learning Mania.

1. INTRODUCTION

Each March, the National Collegiate Athletic
Association (NCAA) conducts a popular college sporting
event known as March Madness, a single-elimination
tournament to select the national championship from 68
college basketball seeded teams [1]. One of the best parts
of March Madness tournament is not only watching the
great competitions, but also following the excitement of
participating in a bracket challenge to predict the outcome
of the tournament games. In 2016, tens of millions of
bracket predictions have been created and submitted to
bracket challenge contests organized by the companies
and associations, for instances, NCAA [2], Kaggle [3],
ESPN [4], Yahoo [5], and NBC [6].

The March Madness event has attracted the attention
of researchers to apply data science to predict the winners.
The early work by Colley [7] and Massey [8] predicted

the match outcomes by solving systems of linear
equations.  Since then, there have been many
developments in the field. For example, Smith and
Schwertman [9] used a linear regression model and
identified the nearly linear relationship between the
tournament seeds and the game results. Ruiz and Perez-
Cruz [10] adapted a classical soccer forecasting model to
produce predictions for basketball games. Lopez and
Matthews [11] designed a logistic regression model using
team-based possession metrics, whose bracket won the
Kaggle competition 2014. Gupta [12] developed a dual-
proportion probability model with a team rating system to
produce the bracket predictions. In comparison to existing
models, we created a predictive model based on matrix
completion approach to forecast the winning probabilities
[13], which allowed us to successfully predict 49 out of
63 tournament games in March Madness 2015.

Even though our previous matrix-completion-based
model worked well in March Madness prediction, a
challenge we faced is how to overcome probability
assignment issues that arose because of the uncertainty
property of matchup scores. It is well known that the final
scores played by the same two teams may vary
significantly if the match were performed again, due to a
fluctuation in the relative strength of the teams.
Sometimes an upset happens [14], where a lower-seeded
team beats a higher-seeded team. Therefore, a winning
probability based on a range of the potential outcomes of
a game would be able to yield more accurate prediction
results, compared to a single instance of predicted scores.

In this paper, we present a new predictive model
(V2.0) that combines matrix completion and a
perturbation process to generate the winning probabilities
of March Madness matches. First of all, we construct a set
of perturbed score matrices to account for the possible
fluctuations in the outcome of regular season matches.
Then, we apply matrix completion to each perturbed score
matrix to estimate the range of the potential outcomes of a
tournament game. As a result, the predicted winning
probability of each possible tournament game is
calculated from the corresponding entries in the
completed matrices.

The rest of the paper is organized as follows. Section
2 describes the proposed predictive model. The results are



shown in section 3. Finally, Section 4 concludes the
paper.

2. METHODS

The predictive model V2.0 incorporates three
primary components: (1) perturbation process, which
generates a set of perturbed score matrices. (2) matrix
completion, which completes the perturbed score
matrices. (3) probability adjustment, where the predicted
winning probabilities are derived from the completed
score matrices.
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Figure 1. Procedure of the predictive model V2.0

Figure 1 presents the procedure of the proposed
predictive model V2.0. Compared to our last year’s
predictive model (V1.0) [13], the model V2.0 relies only
on the score information of regular season matches to
predict the winning probabilities, instead of considering
relevant game details, such as assists, turnovers, and
teams’ rank. Moreover, the perturbation process is
introduced to estimate the possible fluctuations on
matchup scores. The perturbation process can improve the
prediction accuracy on the potential upsets in tournament,
which will be demonstrated in Section 3.

We participated in the bracket challenge contest “the
March Machine Learning Mania 2016”, which is hosted
by Kaggle.com. Each participant group can submit at
most two bracket predictions containing the winning
probabilities of every possible matchup in the tournament.

The Log Loss function below is employed to evaluate
each submission,

n
1
Logloss = —;Z(yi log(py) + (1 — y) log(1 — p))

i=1
where n is the number of games, p, is the winning
probability of team 1 to win over team 2, and y, equals 1
if team 1 wins over team 2 and O otherwise. The bracket
prediction with a smaller value of LogLoss achieves
better prediction accuracy.

2.1 Perturbation Process
We formulate score records from regular season 2016
into matrix format, where 364 teams are placed in rows
and columns and each nonzero entry stores a matchup
score. Figure 2 shows the colormap of the score matrix
2016. It can be seen that the score matrix is an incomplete
matrix, where most of the entries are unknown.
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Figure 2. The Colormap of the score matrix 2016

In basketball games, it is common that teams
experience random fluctuations in their performance.
Therefore, there exists such a bounded range of scores on
every entry in the score matrix, and any value in the range
is likely to happen in real competitions. To this end, we
generate a set of independently perturbed score matrices
to sample and estimate the possible fluctuations in the
outcome of regular season matches.

Let M denote the incomplete score matrix and Q be a
set of the indices of the matchup scores from the regular
season. Each perturbed score matrix as a sample is created
by adding a Gaussian random perturbation to each
nonzero score entry in the score matrix, such that

M;j = M;; +t; for (i,j) € Q
where t; is a random variable for team i which follows the
normal distribution N (0, (sa;)?).
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Figure 3. The average Logloss of the predictions for
years 2012-2015

The standard derivation so; is specified as a multiple
of the standard derivation g; of the game scores of team i
played in the past. The scalar s is a positive number
which is tuned to obtain a smallest average Logloss value
of predictions. Our analysis found that s = 1.0 and s =
1.5 obtain the smallest Logloss values on historical
records for 2012 to 2015, as shown in Figure 3.

2.2 Matrix Completion

Matrix completion is the process of recovering the
unknown entries of an incomplete matrix based on a small
set of observed samples [15, 16, 17]. In our model, we
apply the Singular Value Thresholding (SVT) algorithm
[18], one of the popular matrix completion approaches, to
complete each perturbed score matrix. In theory, the SVT
algorithm seeks a low-rank matrix X that minimizes the
following Lagrange dual function,

1
TlXIl + S 1P (X)) — Po(M IE

where P, is the projection operation and 7 is a
Lagrange multiplier trading off between the nuclear and
Frobenius norm.
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Figure 4. The prediction error for years 2012-2015

In general, parameter t is specified to be a factor of

Vmn, such that T = wvmn, where m and n denote the
dimension of the incomplete matrix and w is a positive
number. In order to figure out a satisfactory w value, we
use MSE (mean squared error) to measure the prediction

error between the predicted scores from the completed
matrices and the actual tournament scores from 2012-
2015. Since the MSE for each year may differ
significantly, to determine the optimal w we chose the
value that performs the best over all years. This was
calculated by:

2015
@ = Goaorsgw?;&o Z (ey“) B 60022152000{ eyt})
y=2012
where y is the tournament year and e,,,, is the MSE value
for a completed matrix in a given year at a w between 600
and 2000. Figure 4 shows prediction errors on the
tournament games 2012-2015 at different w. As a result,
" = 1250 becomes an obvious choice for our model
which achieves the smallest prediction error.

2.3 Probability Adjustments
By counting the number of wins by the teams from a
set of completed matrices, in the model V2.0, we use the
following equation to generate a winning probability
of a game that team 1 beats team 2,
NWINS coqm1

pteaml,teamZ

pteaml,teamZ -

NWINS oqm1 T MWINS toqm2

where nwins,,,,,; and nwins,,,,, denote the number
of wins by team 1 and team 2, respectively.
Additionally, based on the tournament statistics [1] that
no team with seed 16 has ever won a team with seed 1, we
apply the following rule

_ 1 if Seedigmi =1 and Seed,ppmr = 16
Pi= 0 if Seed,,umn1 =16 and Seed,,gny =1

to lower the LogLoss value of our predictive model.

3. RESULTS

By generating and completing 1000 perturbed scores
matrices, our predictive model V2.0 generates the
winning percentages for 2278 potential tournament games
in 2016. For simplicity, the resulting two brackets with
s = 1.0 and s = 1.5 are shown in Appendix, respectively.

Figure 5 presents the actual result of the March
Madness 2016 [19], where the games we predicted
correctly are highlighted in red color and the ones we lost
in green and blue colors. One can find that our predictive
model V2.0 is able to predict accurately the win/lose
outcome of 47 out of 63 tournament games. More
importantly, based on the perturbation process, we
successfully predicted 11 out of 20 upset games (55%),
which outperforms our last year’s result that only 4/12
upsets (33%) were forecasted [13]. However, the final
LogLoss score of our prediction (0.598446) is slightly
greater than that of last year by 0.068899. This is due to
the fact that more severe upsets occurred this year, which



heavily penalize our prediction. As shown in green color
in Figure 5, for example, No.1, No. 2, No. 3, and No. 4
seed teams unfortunately lost their tournament games,
which largely increase our LogLoss score by 0.0807.

4. CONCLUSION

The predictive model V2.0 for March Madness 2016
is presented. To take into account the uncertainties of
matchup scores by the teams, the perturbation process and
matrix completion on score matrices are carried out to
estimate the potential spread in the outcome of a
tournament game. The predicted winning probabilities are
then evaluated from the corresponding entries in the
completed perturbed score matrices.

Des Moines, IA

The predictive model proposed in this paper takes
into account only score records. To gain further
improvement in the prediction accuracy, our future work
will focus on building a comprehensive predictive model
involving relevant game details, such as assists, turnovers,
and teams’ rank.
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