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ABSTRACT 

 In this paper, we present a new predictive model 

based on matrix completion to forecast the winning 

probabilities of each potential game in NCAA basketball 

tournament. The predictive model is evaluated in 

Kaggle’s March Machine Learning Mania competition, 

where each submission is rated by Log Loss function for 

each matchup that occurs in the tournament. We discuss 

neural network and probability refinements used to 

estimate and normalize our predicted probability from the 

predicted performance accomplishments in each matchup 

and team ranks, with the ultimate goal of lowering our 

Log Loss score per matchup. In the stage one of 

predicting 2011-2014 results, our team is ranked 61 out of 

347 teams with Log loss score of 0.56915, which exceeds 

Seed-based benchmark method (0.59071). Furthermore, 

we analyze the pitfalls that were encountered during our 

research so others can improve upon our methodology for 

future research into the March Madness tournament.  

 

Keywords: Matrix Completion, Neural Networks, March 

Madness Prediction, Singular Value Thresholding, March 

Machine Learning Mania. 

 

1. INTRODUCTION  

 The NCAA Men's Division I Basketball Tournament, 

or commonly referred to as March Madness, is one of the 

most popular annual sporting events in the United States. 

Each year, 68 teams are selected for a single elimination, 

playoff style tournament with the final two teams 

competing in the championship game. Millions of people 

have submitted brackets to March Madness tournament 

pools to compete for winning prediction prizes. The 

March Machine Learning Mania competition hosted by 

Kaggle.com is one of free and legal tournament pools, 

where the bracket prediction requires us to submit 

probabilities of every possible matchup of tournament. 

The Log Loss function (the predictive binomial deviance) 

is used to judge each submission, 

𝐿𝑜𝑔𝐿𝑜𝑠𝑠 = −
1

𝑛
∑(𝑦𝑖 log(𝑝𝑖) + (1 − 𝑦𝑖) log(1 − 𝑝𝑖))

𝑛

𝑖=1

 

where 𝑛  is the number of games, 𝑝𝑖  is the winning 

probability of  team 1 playing against team 2, and 𝑦𝑖  

equals 1 if team 1 wins over team 2 and 0 otherwise. A 

smaller value of 𝐿𝑜𝑔𝐿𝑜𝑠𝑠 indicates better performance of 

the predictive model.  

 In order to fill out tournament brackets with high 

predictive accuracy, many computer simulations and 

algorithms have been developed to model the tournament 

and attempt to explore the effective strategies for March 

Madness prediction. For instances, the Colley method [9] 

and the Massey method [10] are two early work using 

statistical methods to predict the outcome of tournaments. 

Later on, Smith and Schwertman [7] proposed a 

regression model and found the nearly-linear relationship 

between teams’ seeds and tournament results. More 

recently, Gupta[12] used a dual-proportion probability 

model with rating of teams learned from season games. 

Lopez and Matthews[13] designed a logistic regression 

model by taking advantage of team-based possession 

metrics, which won the 2014 Kaggle competition. Ruiz 

and Perez-Cruz proposed modified a classical model for 

forecasting soccer to predict basketball game and stated 

that high predictive performance obtained [11]. We refer 

to [12, 14] for a rich overview of existing literature. 

 In this paper, we design a new predictive model using 

matrix completion to predict the results of the NCAA 

tournament. First of all, we formulate performance details 

from regular season games of the same year into matrix 

form, and apply matrix completion to forecast the 

potential performance accomplishments by teams in 

tournament games. Second, we project the predicted 

performance accomplishments into matchup scores, 

where the relationship between performance 

accomplishments and scores are modeled via neural 

network using historical seasons and tournament data. 

Third, probability adjustments are carried out to derive 

the appropriate winning probabilities from the estimated 

matchup scores.  

 The rest of the paper is organized as follows. In 

Section 2, March Madness prediction is formulated as 

Matrix Completion problem. Section 3 describes the 

proposed predictive model. The results of our submission 

reported in section 4. Finally, Section 5 summarizes the 

paper. 

 

2. PREDICTING AS MATRIX COMPLETING 

 Incomplete matrices with the presence of missing 

entries often arise in the situations where data are 



unknown or unobservable. For instance, in the Netflix 

problem, as most users rate only a small subset of movies, 

rating matrices appear to be very sparse and contain a 

large amount of unknown ratings [4,5]. The objective of 

matrix completion is to recover the missing (unknown) 

entries of an incomplete matrix from a small subset of 

observed ones [1-3]. It is commonly believed that the 

most actions of matrices are effected by only a few factors 

in real-life applications. Therefore, an important but 

natural assumption is set with the matrix completion 

problem that the matrix to recover is of low rank or nearly 

low rank. Let 𝑀 denote an incomplete matrix and Ω be a 

set of indices of observed entries, the matrix completion 

problem is then defined as finding a low-rank solution 𝑋 

to the following optimization problem,  

min
𝑋

‖𝑋‖∗ 

                     subject to  𝒫𝛺(𝑋) = 𝒫𝛺(𝑀) 

where ‖∙‖∗  is the nuclear norm which is the sum of 

singular values and  𝒫𝛺  is the projection operation 

defined as 

𝒫𝛺(𝑋)𝑖𝑗 = {
𝑀𝑖𝑗 𝑖𝑓 (𝑖, 𝑗) ∈ Ω

0 𝑖𝑓 (𝑖, 𝑗) ∉ Ω.
 

Many numerical algorithms have been developed in the 

literature to solve the above matrix completion problem. 

For example, convex optimization algorithms based on 

Semi-definite Programming to fill out the missing matrix 

[1,2] and the Singular Value Thresholding (SVT) 

algorithm to efficiently approximate the optimal result[3]. 

We refer to [2] for more comprehensive overview on 

nuclear norm minimizations. 

 In the same spirit, March Madness prediction can be 

formulated as matrix completion problem as well. Figure 

1 shows the plot of a matrix of games played between 364 

different college basketball teams in regular season 2015, 

where teams are placed on rows and columns, and a blue 

dot indicates the game has played between team 𝑖  and 

team 𝑗.  

 
Figure 1. Games Played Between 364 Different College 

Basketball Teams in Regular Season 2015 

 

As only 3771 matches were held in regular season 2015, 

one can find that the matrix of games is sparse with most 

of entries are unknown. If those missing entries can be 

recovered, the outcome of each potential matchup in the 

tournament can be estimated by assigning with the 

corresponding results from the completed matrices. 

 It is well known that the outcome of a basketball 

game depends to a large extent on the following 

performances accomplishments made by teams,  

1) field goals attempted (fga);  

2) field goals made (fgm); 

3) three pointers attempted (fga3); 

4) three pointers made (fgm3);  

5) free throws attempted (fta);  

6) free throws made (ftm); 

7) offensive rebounds (or); 
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Figure 2.  Procedure of the Proposed Predictive Model 
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8) defensive rebounds (dr); 

9) assists (ast); 

10) turnovers (to); 

11) steals (stl); 

12) blocks (blk); 

13) personal fouls (pf).  

Under the assumption that the strengths and 

weaknesses of any team can be reflected from game 

records in regular season prior to the tournament, we 

place the related performance data from regular season of 

the same year into 13 performance matrices to predict 

outcome of a basketball game. The matrix completion is 

then applied to complete each performance matrix in our 

predictive model.  

 Figure 2 shows the procedure of the proposed 

predictive model, where the upper case of performance 

name is used to denote each performance matrix, for 

example, 𝐹𝐺𝐴  represents a matrix of field 

goals attempted. The predictive model proposed in this 

paper consists of three phases: (1) matrix completion, 

which predicts the performance accomplishments in every 

possible tournament game. (2) neural network, where the 

predicted performance accomplishments are used to 

estimate matchup scores based on the relationship learned 

from historical records. (3) probability adjustments, where 

the predicted winning probability are derived from the 

estimated matchup scores and team ranks.  

 

3. METHODS 

3.1 Matrix Completion 

 We apply Cai’s SVT algorithm [3] to complete each 

performance matrix. Taking the matrix 𝐹𝐺𝐴 of field goals 

attempted by teams in regular season 2014 as example, 

where Ω is assigned with a set of indices of the played 

games. The SVT algorithm seeks a low-rank matrix 𝑋 to 

minimize the following Lagrange dual function,   

𝜏‖𝑋‖∗ +
1

2
‖𝒫𝛺(𝑋) − 𝒫𝛺(𝐹𝐺𝐴 )‖𝐹

2  

where 𝒫𝛺  is the projection operation and 𝜏  is a 

Lagrange  multiplier trading off between the nuclear and 

Frobenius norm. In general, suppose the matrix to recover 

is of size 𝑚 × 𝑛, the value of 𝜏 is set to be a factor of 

√𝑚𝑛 , such that 𝜏 = 𝜔√𝑚𝑛 , where 𝜔  is a positive 

number. 

 A difficulty in applying the SVT algorithm to March 

Madness prediction is that not all values of 𝜔 can make 

the SVT algorithm provide a satisfactory completed 

matrix. Figure 3 shows the predicted field goals attempted 

by the SVT algorithm at 𝜔 = 8 , 𝜔 = 120, and 𝜔 = 150, 

respectively. We plot the real ones of tournament 2014 in 

red color for comparison purposes. One can find that at 

very small value 𝜔 such as 𝜔=8, the completed matrix is 

polluted with small, even negative values, which do not 

make much sense in basketball games.  In order to obtain 

a reliable completed matrix for all performance matrices, 

we use the average of 50 completed 𝐹𝐺𝐴 matrices from 

using the SVT algorithm at different 𝜔 from 101 to 150. 

(Figure 4). 

 

 

 

 
Figure 3. The Predicted and the Real Field Goals 

Attempted by SVT at 𝜔=8 (Upper), 𝜔=120 (Middle) , 

and 𝜔=150 (Lower)   

   

 In the same way, we complete other 12 performance 

matrices based on records in regular season of the same 

year. After matrix completion, the corresponding entries 

for one tournament matchup are selected from each 

performance matrix to form a vector of performance 

accomplishments, which will be input into a trained 

neural network to generate the estimated matchup scores, 

as shown in Figure 2. 
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Figure 4. The Completed Matrix 𝐹𝐺𝐴 

 

3.2 Neural Network 

 We use a feed-forward neural network to model the 

relationship between performance accomplishments and 

scores. Figure 5 illustrates architecture of a neural 

network used with 15 neurons. 

 
Figure 5. The Architecture of Feed-Forward Neural 

Network 

 

 For training neural network, the dataset is selected 

from team-level historical season and tournament records 

from 2003 to 2014. We randomly divide the dataset into 

three subsets, 70% samples are used for training, 15% 

data for validation, and 15% data for testing. As shown in 

Figure 5, twenty performance accomplishments by the 

winning team and the losing team, including field 

goals percentage (fgm/fga), three pointers percentage 

(fgm3/fga3), free throws percentage (ftm/fta), offensive 

rebounds (or), defensive rebounds (dr), assists (ast), 

turnovers (to), steals (stl), blocks (blk), and personal fouls 

(pf), are encoded as the network input, while the 

corresponding network target is set to two scores. Prefixes 

“w” and “l” are used to distinct between the winning team 

and the losing team. We also randomly flip the order of 

the winning team and the losing team in network input 

and target to increase the learning capability of neural 

network.  

 Once the neural network is trained, the predicted 

scores of each possible matchup in tournament can be 

estimated with ease based on the forecasted performance 

accomplishments from the previous matrix completion 

step. 

  

3.3 Probability Adjustments  

 Although normalized scores can be used as 

probabilities, such that 

𝑝𝑡𝑒𝑎𝑚1,𝑡𝑒𝑎𝑚2 =
𝑠𝑐𝑜𝑟𝑒𝑡𝑒𝑎𝑚1

𝑠𝑐𝑜𝑟𝑒𝑡𝑒𝑎𝑚1+𝑠𝑐𝑜𝑟𝑒𝑡𝑒𝑎𝑚2
          (1) 

where 𝑠𝑐𝑜𝑟𝑒𝑡𝑒𝑎𝑚1  and 𝑠𝑐𝑜𝑟𝑒𝑡𝑒𝑎𝑚2 denote the points 

scored by team 1and team 2, respectively, it cannot 

accurately reflect real differences among matchup scores. 

For example, suppose that team 1 wins over team 2 with 

points 80 to 50,  

𝑝𝑡𝑒𝑎𝑚1,𝑡𝑒𝑎𝑚2 =
80

80 + 50
 

= 0.6154, 
the computed winning probability 0.6154 from equation 

(1) is too low. As we known, beating by 30 more points in 

a basketball game means a dominating advantage. 

Therefore, in order to generate a more reasonable 

probabilities, we use equation (2) with a sixth power of a 

score instead, 

𝑝𝑖 =
𝑠𝑐𝑜𝑟𝑒𝑡𝑒𝑎𝑚1

6

𝑠𝑐𝑜𝑟𝑒𝑡𝑒𝑎𝑚1
6 +𝑠𝑐𝑜𝑟𝑒𝑡𝑒𝑎𝑚2

6                     (2) 

which gives   

𝑝𝑡𝑒𝑎𝑚1,𝑡𝑒𝑎𝑚2 =
806

806 + 506
 

= 0.9437, 
so that the significant difference between scores can be 

retained. In addition, to increase the predict accuracy, we 

use equation (3) to refine probabilities in our predictive 

model, which takes teams’ seeds into account, 

𝑝𝑖 =
1

2
(

1

2
+

3(𝑠𝑒𝑒𝑑𝑡𝑒𝑎𝑚1−𝑠𝑒𝑒𝑑𝑡𝑒𝑎𝑚2)

100
+ 𝑝𝑖)      (3)  

where 𝑠𝑒𝑒𝑑𝑡𝑒𝑎𝑚1  and 𝑠𝑒𝑒𝑑𝑡𝑒𝑎𝑚2denote the rank of team 

1and team 2 in the tournament, respectively.  
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 While Kaggle allows participants submit up to two 

brackets and the final leaderboard score will be chosen 

based on the best one. To attempt to further lower the 

𝐿𝑜𝑔𝐿𝑜𝑠𝑠 value of our predictive model, we impose the 

following two equations (4) and (5) on deriving the 

aggressive probabilities as our second bracket,  

𝑝𝑖 = {
1 𝑖𝑓  𝑆𝑒𝑒𝑑𝑡𝑒𝑎𝑚1 = 1   𝑎𝑛𝑑    𝑆𝑒𝑒𝑑𝑡𝑒𝑎𝑚2 = 16 
0 𝑖𝑓  𝑆𝑒𝑒𝑑𝑡𝑒𝑎𝑚1 = 16   𝑎𝑛𝑑    𝑆𝑒𝑒𝑑𝑡𝑒𝑎𝑚2 = 1

 (4) 

𝑝𝑖 = {
0.9545 𝑖𝑓  𝑠𝑐𝑜𝑟𝑒𝑡𝑒𝑎𝑚1 − 𝑠𝑐𝑜𝑟𝑒𝑡𝑒𝑎𝑚2 > 20 
0.0455 𝑖𝑓  𝑠𝑐𝑜𝑟𝑒𝑡𝑒𝑎𝑚1 − 𝑠𝑐𝑜𝑟𝑒𝑡𝑒𝑎𝑚2 < −20

   (5) 

where equation (4) is constructed from tournament 

statistics [8], no team with seed 16 has ever won a team 

with seed 1, while equation (5) is used if a team gains 

more than 20-points advantage in our model.  

  

4. RESULTS   

 The March Machine Learning Mania competition 

consists of two stages: In the first stage, the participants 

develop and test their models on predicting results of 

tournaments from 2011 to 2014. In the second one, the 

participants predict the outcome of 2015 tournament.  

 Our initial bracket based on (2) for predicting 

tournaments in 2011-2014 has 𝐿𝑜𝑔𝐿𝑜𝑠𝑠 value of 0.61. By 

applying (3), the LogLoss value decreases down to 

0.57570. A further reduction is gained by using our 

aggressive bracket, which lets our team be ranked 61 out 

of 347 teams with Log loss score of 0.56915, which 

Figure 6.  The Actual Result of March Madness 2015 



exceeds Seed-based benchmark method (0.59071).  

 For the second stage, we submitted the winning 

percentages of 2278 potential games of tournament 2015. 

For simplicity, the standard bracket and the aggressive 

one of forecasting the tournament outcome are shown in 

Appendix, where the results are generated according to 

our predicted winning probabilities.  

 Along with the championship game of March 

Madness 2015 completed on April 6th, 2015, our brackets 

finish with the 𝐿𝑜𝑔𝐿𝑜𝑠𝑠  score of 0.529547, where 

𝐿𝑜𝑔𝐿𝑜𝑠𝑠  is evaluated based on the probabilities on the 

actual tournament games. On the happy side, we 

successfully predict the win/lose results on 49 out of 63 

tournament games, and we particularly predict correctly 

in the game between Wisconsin and Kentucky. Figure 6 

shows the actual result of the March Madness 2015 [15], 

where the games we predicted correctly are highlighted in 

red color. However, our submitted brackets are heavily 

penalized by several upsets, as shown in green color and 

blue color in Figure 6. For example, in the games (green 

color) that No. 14 seed UAB drops No. 3 seed Iowa State 

and No. 14 seed Georgia State defeats No. 3 seed Baylor, 

where we bet the winning probabilities 0.95 and 0.8 on 

Iowa State and Baylor, respectively, which result in two 

largest increments in our 𝐿𝑜𝑔𝐿𝑜𝑠𝑠  score of 0.047 and 

0.0312.   

  

5. CONCLUSIONS 

 In this paper, we present a matrix completion 

approach to predict the performance accomplishments of 

every possible matchup in March Madness competition. 

An elaborated neural network and probability adjustments 

are carried out to estimate the winning probability of each 

game based on the predicted performance details and 

team ranks.  

 There is a lot of space to improve our predictive 

method. For example, in our current model, incomplete 

performance matrices are completed individually without 

considering any potential correlations and team seeds, 

which significantly hampers the accuracy of our brackets. 

In our predictive model for next year, we plan to pre-

process performance details based on teams ‘seeds and 

construct a single larger matrix to treat all those key 

information together. Moreover, a more careful 

probability adjustments will be designed to set up the 

winning probabilities.  
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(2) The Aggressive Bracket 

 


